149. Is aberrant CD8+ T cell activation by hypertension associated with cardiac injury in severe cases of COVID-19? Cell Mol Immunol. 2020 May 12:1–2; doi: 10.1038/s41423-020-0454-3
148. Role of oxidized LDL-induced “trained macrophages” in the pathogenesis of COVID-19 and benefits of pioglitazone: A hypothesis. Diabetes Metab Syndr. 2020 May 12; doi: 10.1016/j.dsx.2020.05.007
147. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020 May 13:198018; doi: 10.1016/j.virusres.2020.198018
146. A Review: Does Complement or the Contact System Have a Role in Protection or Pathogenesis of COVID-19? Pulm Ther. 2020 May 13:1–8; doi: 10.1007/s41030-020-00118-5
145. B-cell depleting therapies may affect susceptibility to acute respiratory illness among patients with Multiple Sclerosis during the early COVID-19 epidemic in Iran. Mult Scler Relat Disord. 2020 May 13:102195; doi: 10.1016/j.msard.2020.102195
144. SARS-CoV-2-specific antibody detection in healthcare workers in Germany with direct contact to COVID-19 patients. J Clin Virol. 2020 May 13:104437; doi: 10.1016/j.jcv.2020.104437
143. The Promise and Peril of Natural Killer Cell Therapies in Pulmonary Infection. Immunity. 2020 May 13; doi: 10.1016/j.immuni.2020.04.018
142. Targeting T-cell senescence and cytokine storm with rapamycin to prevent severe progression in COVID-19. Clin Immunol. 2020 May 13:108464; doi: 10.1016/j.clim.2020.108464
141. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia. Eur J Intern Med. 2020 May 13; doi: 10.1016/j.ejim.2020.05.009
140. A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection. Cell. 2020 May 13; doi: 10.1016/j.cell.2020.05.016
139. The Challenges of Vaccine Development against a New Virus during a Pandemic. Cell Host Microbe. 2020 May 13;27(5):699–703.
138. Rational Vaccine Design in the Time of COVID-19. Cell Host Microbe. 2020 May 13;27(5):695–698.
137. Decreased T cell populations contribute to the increased severity of COVID-19. Clin Chim Acta. 2020 May 13; doi: 10.1016/j.cca.2020.05.019
136. Identification of SARS-CoV RBD-targeting monoclonal antibodies with cross-reactive or neutralizing activity against SARS-CoV-2. Antiviral Res. 2020 May 13:104820; doi: 10.1016/j.antiviral.2020.104820
135. Predicción de la inmunogenicidad de la proteína del SARS-CoV-2 responsable de la infección COVID-19 en humanos. Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta. 2020;45(3).
134. Inmunopatogenia en la evolución del paciente grave por la COVID-19. Rev. Electron. Zoilo E. Marinello., 2020;45.
133. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020; doi: 10.1016/j.autrev.2020.102567
132. Trained immunity: a tool for reducing susceptibility and severity of SARS-CoV-2 infection. Cell. 2020; doi: 10.1016/j.cell.2020.04.042
131. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe. 2020; doi: 10.1016/j.chom.2020.04.017
130. Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chem Biol Interact. 2020; doi: 10.1016/j.cbi.2020.109125
129. Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J Clin Virol. 2020; doi: 10.1016/j.jcv.2020.104413
128. Immune dysfunction leads to mortality and organ injury in patients with COVID-19 in China: insights from ERS-COVID-19 study. Signal Transduct Target Ther. 2020;5:62.
127. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int J Infect Dis. 2020; doi: 10.1016/j.ijid.2020.04.086
126. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev. 2020; doi: 10.1016/j.autrev.2020.102554
125. Why judiciously timed anti-IL 6 therapy may be of benefit in severe COVID-19 infection. Autoimmun Rev. 2020; doi: 10.1016/j.autrev.2020.102563
124. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb Pathog. 2020; doi: 10.1016/j.micpath.2020.104236
123. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: a retrospective case-control study. EClinicalMedicine. 2020; doi: 10.1016/j.eclinm.2020.100375
122. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020; doi: 10.1016/j.immuni.2020.04.023
121. COVID-19: Immunology and treatment options. Clin Immunol. 2020 Apr 27:108448; doi: 10.1016/j.clim.2020.108448
120. The Virus that Changed Spain: Impact of COVID-19 on People with HIV. AIDS Behav. 2020 Apr 27:1–5; doi: 10.1007/s10461-020-02877-3
119. Human leukocyte antigen susceptibility map for SARS-CoV-2. J Virol 2020; DOI: 10.1128/JVI.00510-20.
118. Host Immune Response and Immunobiology of Human SARS-CoV-2 Infection. Coronavirus Disease 2019 (COVID-19). 2020:43–53; doi: 10.1007/978-981-15-4814-7_5
117. Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Coronavirus Disease 2019 (COVID-19). 2020:23–31; doi: 10.1007/978-981-15-4814-7_3
SCI reúne recursos sobre inmunidad y SARS-CoV-2
En la sección: Actualidades, COVID-19, Declaración, Infectología, Inmunología básica, Inmunología clínica, Inmunoterapia, Linfocitos T, Publicaciones, Trasplantes, Vacunología. Publicado en: .
Haga un comentario
Pings en SCI reúne recursos sobre inmunidad y SARS-CoV-2