cáncer

Una nueva terapia contra el cáncer basada en la nanotecnología fue desarrollada por un equipo internacional de investigadores, publica la revista Nature Chemistry.
Su principio es la encapsulación de un catalizador de paladio dentro de microesferas para sintetizar materiales artificiales o activar fármacos dentro de células humanas, para de esta manera evitar su toxicidad, explican los autores del estudio, especialistas de las Universidades de Granada, España, y de Kebangsaan, Malasia.
Este sistema almacena en su microestructura el paladio, un metal que no se encuentra de forma natural en células humanas y permite catalizar reacciones químicas en la célula sin alterar sus funciones básicas, como la síntesis de proteínas y el metabolismo. La técnica es capaz de crear fármacos anticancerígenos dentro de la célula. Serán efectivos en el tratamiento específico de tumores y mejorará los actuales tratamientos quimioterapéuticos.
El novedoso tratamiento se incluye en el amplio abanico de aplicaciones terapéuticas de la nanotecnología. Una de sus bondades es que no provoca los efectos secundarios asociados a la quimioterapia.
Washington, febrero 12/2011 (PL)

En: Noticias #

Cancer scientists led by Dr. John Dick at the Ontario Cancer Institute (OCI) and collaborators at St Jude Children’s Research Hospital (Memphis) have found that defective genes and the individual leukemia cells that carry them are organized in a more complex way than previously thought. The findings, published today in Nature (DOI:10.1038/nature09733), challenge the conventional scientific view that cancer progresses as a linear series of genetic events and that all the cells in a tumour share the same genetic abnormalities and the same growth properties. «Our results show this is not the case and open the way to discover how genetic abnormalities transform normal cells into leukemic cells and the steps that have to happen to make the leukemic cells increasingly abnormal and aggressive, how leukemic cells at different steps of genetic evolution (or progression) respond to therapy, or contribute to relapse,» says Dr. Dick, Senior Scientist at OCI’s Campbell Family Institute for Cancer Research, the research arm of Princess Margaret Hospital, and the McEwen Centre for Regenerative Medicine at University Health Network. Dr. Dick is also a Professor in the Department of Molecular Genetics, University of Toronto, and Director of the Cancer Stem Cell Program at the Ontario Institute for Cancer Research.  The research team found that the leukemia cells taken from patients with acute lymphoblastic leukemia (ALL) are actually composed of multiple families of genetically distinct leukemia cells. They looked at how these families developed and retraced the ALL «family tree» back to its origins. They discovered that the so-called black sheep – the cells that propagate the disease and potentially survive therapy – persist through generations, and even branch off and evolve to form genetically distinct cancer families. Some of these genetic families dominate, making it appear that the leukemia cells only have one set of genetic abnormalities while other families are very rare, explaining why they had never been seen before.  The study results provide data linking genetic events in ALL taken from patients when first diagnosed to their future clinical survival. In the lab, the researchers reproduced human ALL in mice transplanted with patient leukemia samples. Sometimes the dominant genetic family would grow in the mice while in other mice the rarer families would grow.  «By looking at the genetic signatures of the leukemia cells in the different mice we were able to figure out their genetic ancestry and the evolutionary trajectory that that particular leukemia took. We found that if a particular gene family was mutated, the tumours were aggressive when grown in the mice. The patients with the corresponding tumours had poorer survival showing that the human-mouse transplant system could be very useful in predicting patient outcome.» This insight into genetic diversity has positive implications for cancer treatment, says Dr. Dick. «Understanding the complexity of cellular relationships and the existence of distinct genetic families of leukemia cells will shed light on why some cells of the cancer are not killed by the therapy and eventually regrow resulting in disease relapse, and help accelerate the development of tailored therapies to wipe out all the unwanted branches in the genetic tree.» Research collaborator Dr. Charles Mullighan, a hematologist at St. Jude Children’s Research Hospital, adds: «Overall, the study proved that many leukemias comprise multiple subpopulations with different genetic alterations, and that these genetic alterations may evolve over time. The main clinical implication is that we now need to extend this work to identify genetic changes at low levels at diagnosis that confer a high risk of treatment failure and relapse and find ways of targeting them.» The current research builds from earlier findings published in 2007 when the Dick team developed a method to convert normal human blood cells into «human» leukemia stem cells. The converted cells, when transplanted into special mice that permit the growth of human cells, can replicate the entire disease process from the very moment it begins.  In 1994, Dr. Dick identified the first cancer stem cell in leukemia, following on the original discovery in 1961 of the blood stem cell by renowned OCI scientists, Drs. Ernest McCulloch and James Till — a discovery that formed the basis of all current stem cell research. Dr. Dick, who holds the Canada Research Chair in Stem Cell Biology, has published other findings showing that colon cancer arises from stem cells specific to the tumour.
http://www.eurekalert.org/pub_releases/2011-01/uhn-csd011711.php

En: Noticias #

MIT (Masschusetts Institute of Technology) scientists have discovered that cells lining the blood vessels secrete molecules that suppress tumor growth and keep cancer cells from invading other tissues, a finding that could lead to a new way to treat cancer. Elazer Edelman, professor in the MIT-Harvard Division of Health Sciences and Technology (HST), says that implanting such cells adjacent to a patient’s tumor could shrink a tumor or prevent it from growing back or spreading further after surgery or chemotherapy. He has already tested such an implant in mice, and MIT has licensed the technology to Pervasis Therapeutics, Inc., which plans to test it in humans.  Edelman describes the work, which appears in the Jan. 19 issue of the journal Science Translational Medicine, as a «paradigm shift» that could fundamentally change how cancer is understood and treated. «This is a cancer therapy that could be used alone or with chemotherapy radiation or surgery, but without adding any devastating side effects,» he says. Cells that line the blood vessels, known as endothelial cells, were once thought to serve primarily as structural gates, regulating delivery of blood to and from tissues. However, they are now known to be much more active. In the 1980s, scientists discovered that endothelial cells control the constriction and dilation of blood vessels, and in the early 1990s, Edelman and his postdoctoral advisor, Morris Karnovsky, and others, discovered an even more important role for endothelial cells: They regulate blood clotting, tissue repair, inflammation and scarring, by releasing molecules such as cytokines (small proteins that carry messages between cells) and large sugar-protein complexes. Many vascular diseases, notably atherosclerosis, originate with endothelial cells. For example, when a blood vessel is injured by cholesterol, inappropriately high blood sugar, or even physical stimuli, endothelial cells may overreact and provoke uncontrolled inflammation, which can further damage the surrounding tissue. Edelman and graduate student Joseph Franses hypothesized that endothelial cells might also play a role in controlling cancer behavior, because blood vessels are so closely entwined with tumors. It was already known that other types of cells within tumors, known collectively as the tumor stromal microenvironment, influence cancer cell growth and metastasis, but little was known about how endothelial cells might be similarly involved. In the new study, Edelman, Franses and former MIT postdoctoral fellows Aaron Baker and Vipul Chitalia showed that secretions from endothelial cells inhibit the growth and invasiveness of tumor cells, both in cells grown in the lab and in mice. Endothelial cells secrete hundreds of biochemicals, many of which may be involved in this process, but the researchers identified two that are particularly important: a large sugar-protein complex called perlecan, and a cytokine called interleukin-6. When endothelial cells secrete large amounts of perlecan but little IL-6 they are effective at suppressing cancer cell invasion, whereas they are ineffective in the opposite proportions.
The researchers theorize that there is a constant struggle between cancer cells and endothelial cells, and most of the time, the endothelial cells triumph. «All of us, every day, are exposed to factors that cause cancer, but relatively few of us exhibit disease,» says Edelman. «We believe that the body’s control mechanism wins out the bulk of the time, but when the balance of power is reversed cancer dominates.» The struggle also depends on a third player, the endothelial cells’ extracellular matrix — structural proteins that pave blood vessels and on which the endothelial cells reside. Endothelial cells only function properly when their extracellular matrix is stable and of the correct biochemical composition. Under normal conditions, if a cell becomes cancerous, the endothelial cell may then keep it in check. However, the cancer cell fights back by trying to destroy the extracellular matrix or change the endothelial cell directly, both of which hinder the endothelial cell’s efforts to control the cancer. «There is this three-way balance that needs to be achieved,» says Edelman. The more aggressive a cancer cell, the more likely it is to overcome the endothelial cells and extracellular matrix, allowing it to spread to other tissues. Several years ago, Edelman began using endothelial cells, grown within a scaffold made of denatured, compressed collagen (a protein that makes up much of human connective tissue), as an implantable device. The «matrix-embedded endothelial cells» served as a convenient unit that could be produced in bulk, tested for quality control, retained intact for months and implanted immediately when needed. This way, the healthiest cells could be selected to secrete all of the chemicals normally released by endothelial cells and placed in multiple locations in the body to control disease.  In clinical trials these implants were placed around blood vessels after vascular surgery and controlled local clotting and infection better than devices without cells. Significantly, because the endothelial cells were associated with a matrix mimicking their natural state, even cells from other people could be implanted without being rejected by the patients’ immune systems. No major side effects were seen in the clinical trials,  «Blood vessels and endothelial cells are the perfect regulatory units and our synthetic device recapitulated these control units perfectly,» says Franses. Blood vessels penetrate to the deepest recesses of tumors, and in doing so carry the powerful regulatory endothelial cells as close to cancer cells as possible. The extracellular matrix backbone of the vessels can keep the endothelial cells healthy and the healthy endothelial cells control nearby cancer cells. «This is what we mimicked with our devices,» he says. «In a sense it is like putting a cellular policeman on the corner of every tumor neighborhood.» In one mouse experiment reported in the new paper, endothelial cell implants significantly slowed tumor growth and prevented gross destructive change in tumor structure. Another experiment showed that cancer cells that had been grown in the secretions of endothelial cells were less able than standard cancer cells to metastasize and colonize the lungs of mice.  The new findings could also explain why drugs that suppress angiogenesis — growth of new blood vessels — have shown only transient and moderate benefit for cancer patients thus far. «You starve the tumor of its blood supply, but you also damage tumor blood vessel endothelial cells, so when the tumor comes back, there’s nothing to keep it in check. The vessels feed the tumor but their endothelial cells control the cancer cells within. Giving the endothelial cells without the blood vessels provides the best of both worlds and perhaps one day could provide new means of cancer therapy,» says Edelman.
http://www.eurekalert.org/pub_releases/2011-01/miot-msd011911.php

En: Noticias #

Scientists around the world have been hot on the trail of a genetic mutation closely associated with some brain cancers and leukemia since the mutation’s discovery in 2008. The hunt is now yielding fruit. In the Jan. 18, 2011 issue of Cancer Cell, researchers reveal how the mutation contributes to cancer development and suggest potential ways to counter its effects.  About 75 percent of people with low-grade brain tumors and 20 percent of people with acute myeloid leukemia have a mutated version of a gene known as IDH. IDH helps cells metabolize, or eat, food. «We now know that IDH represents the most frequently mutated metabolic gene in human cancer. And that changes the landscape of cancer research in metabolism quite a lot,» said Yue Xiong, PhD, William R. Kenan Jr. professor of biochemistry and biophysics at the UNC Lineberger Comprehensive Cancer Center. Xiong and collaborators at UNC, the University of California San Diego, and the Shanghai Medical College of Fudan University in China discovered that the IDH mutation sets off a battle inside cells between two metabolites, small molecules produced by metabolic enzymes. On the good side—the side that leads to normal cell growth—is a molecule called ?-KG. On the bad side—the side that leads to cancer—is a molecule called 2-HG. The researchers discovered that cells with the IDH mutation produce less ?-KG and more 2-HG than normal cells. 2-HG then outcompetes ?-KG, disabling a whole family of enzymes that depend on ?-KG to do their jobs in the cell. Normal cell functions break down, contributing to the development of cancer. Two of the affected enzymes are also involved in controlling gene expression, so if 2-HG wins the battle, it can also activate other genes that lead to cancer growth.  Bolstering ?-KG to help fight 2-HG could offer a new treatment option for patients with the mutation. «?-KG is a natural product of the body. So we know we can survive it, we know it’s not toxic. That gives us a window of opportunity,» said Xiong. «In terms of future therapeutic interventions for IDH-mutated tumors, there are two directions we could go,» Xiong said. «One is developing a drug that inhibits the ability of the mutant enzyme from producing 2-HG. Another is to somehow provide ?-KG back to the patients with mutated IDH to battle 2-HG.»  Such therapies would help only those cancer patients with IDH mutations. «We no longer believe there will be a single silver bullet, a drug to treat and cure all types of cancers,» Xiong said. «Instead, we are looking into the therapeutic treatment of individual types of cancer. Therefore, a specific agent that is targeting a very specific event such as tumor with mutated IDH now becomes much more valuable.»  In 2010, more than 13,000 people died from brain and other nervous system cancers, and more than 20,000 died from leukemia. A drug that helps even a portion of patients with these cancers can still affect a lot of people, said Xiong.
http://www.eurekalert.org/pub_releases/2011-01/uonc-mb

Expertos chinos alertaron sobre los diferentes factores de riesgo de desarrollar cáncer en la niñez y en la adolescencia, durante un evento para ampliar el conocimiento de la población respecto a la enfermedad.
Los especialistas se refirieron a los estilos de vida poco saludables, profesiones de los padres vinculadas al plomo y aspectos relacionados con el entorno ambiental.
«Científicamente está demostrado que la obesidad, el sedentarismo, una dieta alta en calorías pueden conducir a esta dolencia en la niñez. No obstante intervenir a tiempo  –cambiando el estilo de vida-  podría evitar el desarrollo de la enfermedad, dijo el secretario general de la Asociación de Lucha contra el Cáncer, Zhang Guangchao.
«Entre los niños es mayor la incidencia de leucemia, linfoma y cáncer cerebral, mientras en los adolescentes es el cáncer óseo el más frecuente.», precisó.
En el evento, efectuado la víspera por el portal sohu.com, el experto en carcinoma pulmonar Zhi Xiuyi dijo que las tasas de neoplasias de mama, piel y colon, relacionados con estilos de vida poco saludables, aumentan con rapidez en el país. Se debe a la adopción en las últimas décadas de modelos occidentales.
Los expertos explicaron que, según estudios, los niños desarrollan más la leucemia después de la decoración del hogar, debido a la exposición prolongada a productos químicos nocivos de los materiales destinados a ese trabajo.
Los hijos de padres con ocupaciones como conductor y pintor tienen más probabilidades de exposición al plomo, otro factor de riesgo.
Advirtieron además acerca de la contaminación ambiental.
En la actualidad en la parte continental de China existen 32 mil niños menores de 14 años que sufren cáncer de varios tipos, para una prevalencia de 104 por millón, según Zhang.
Beijing, enero 14/2011 (PL)

En: Noticias #

Un estudio del mapa genético de los tumores cerebrales en los niños muestra que presentan muchas menos mutaciones que cánceres similares en los adultos, lo que implica que algún día será más fácil tratarlos, informaron científicos.
La investigación del meduloblastoma, el tipo más común de cáncer cerebral en los niños, también halló nuevas mutaciones, señalaron los expertos en la revista Science.
«Estos análisis muestran claramente que los cambios genéticos en los cánceres pediátricos son notablemente diferentes a los de los tumores adultos», indicó en un comunicado el doctor Victor Velculescu, de la Johns Hopkins University en Baltimore, quien dirigió el estudio.
«Ante esas menores alteraciones, la esperanza es que sea más fácil usar la información para desarrollar nuevas terapias para ellos», añadió.
El meduloblastoma es el tumor cerebral maligno más común en los niños, diagnosticado en alrededor de 400 niños por año en Estados Unidos y con una tasa de supervivencia del 70% y más.
«Es un desafío particular tratar a los niños con cáncer cerebral dado que nuestros tratamientos más efectivos, la cirugía y la radioterapia, pueden causar importantes efectos colaterales, incluidas discapacidades cognitivas y anomalías hormonales», dijo el doctor Donald Parsons, del Colegio de Medicina Baylor, en Texas.
«Para nuestros pacientes más jóvenes, los efectos pueden ser potencialmente devastadores», agregó Parsons.
Los investigadores secuenciaron casi todos los genes de tumores tomados de 22 niños con meduloblastoma y los compararon con el ADN normal. Cada muestra tumoral tenía en promedio 11 mutaciones, indicaron los expertos, que hallaron en total 225 variaciones genéticas.
El equipo comparó estos hallazgos con muestras de otros 66 tumores meduloblastoma, incluidas algunas muestras de adultos.
Encontraron algunas de las mutaciones genéticas esperadas y en el 16% de los pacientes hallaron nuevas e inesperadas variantes en los genes MLL2 y MLL3, conocidos por ayudar a suprimir tumores no implicados anteriormente en el meduloblastoma.
«Al igual que otros genes hallados en el meduloblastoma, los genes MLL2 y MLL3 interrumpen el desarrollo normal del cerebro durante la niñez», indicó el doctor Peter Phillips, del Hospital de Niños de Filadelfia, en un comunicado.
Los expertos señalaron que las terapias personalizadas que pueden eliminar las células con mutaciones que provocan cáncer se están volviendo cada vez más comunes en el tratamiento oncológico y añadieron que quizá sea posible diseñar fármacos con los que se puedan tratar los tumores cerebrales infantiles con menos efectos colaterales que los enfoques actuales.
«Ahora debemos descubrir cómo armar el rompecabezas y dirigir sus partes para desarrollar nuevas terapias», manifestó el doctor Bert Vogelstein, de la Johns Hopkins. «Esto es en lo que los científicos se focalizarán en la próxima década», añadió. Washington, diciembre 18/2010 (Reuters)

En: Noticias #

Una investigación realizada por el Grupo de División Celular y Cáncer del Centro Nacional de Investigaciones Oncológicas (CNIO) ha demostrado que prevenir el último paso de la división celular elimina de forma eficaz las células tumorales «in vivo».
El trabajo, publicado en la revista Cancer Cell, ha sido dirigido por el doctor Marcos Malumbres quien ha explicado que esta investigación revela que quizás las terapias deberían enfocarse a prevenir cómo las células «salen» del ciclo celular, lo que se conoce como salida de mitosis.
La aplicación clínica de este hallazgo no es inmediata ya que es necesario ahora buscar compuestos químicos que tengan este efecto y puedan usarse en la clínica humana. Sin embargo, el trabajo sienta las bases moleculares para trabajar ahora en esta dirección con la esperanza de elaborar una estrategia terapéutica con mayor eficiencia que las diseñadas hasta el momento.
El estudio, que ha constituido la tesis doctoral de Eusebio Manchado en el CNIO, muestra que las células tumorales son mucho más sensibles a morir cuando están dentro de mitosis, un estadio caracterizado por una organización celular muy inestable. Así, el trabajo descubre que las células tumorales mueren irremediablemente cuando se les impide salir de mitosis, mientras que pueden permanecer viables cuando se les ataca con otras estrategias.
Los investigadores han empleado ratones modificados genéticamente en los que se ha eliminado Cdc20, una molécula necesaria para la salida de mitosis. Tras su eliminación se previene su salida de mitosis y todas las células mueren entre 1 y 2 días.
Sin embargo, el tratamiento con otras sustancias químicas como taxol, que actualmente se emplean en los hospitales para tratar diversos tumores, solo produce unos resultados parciales y gran parte de las células se escapan al tratamiento y no mueren. Los estudios en tumores inducidos en ratones indican que mientras taxol u otras sustancias químicas usadas en quimioterapia solo producen una parada parcial del tumor, la eliminación de Cdc20 provoca una regresión tumoral completa en 2 semanas.
EL ciclo de división celular o «mitosis» es el proceso por el que las células se multiplican produciendo nuevas células hijas. Para ello, las células tienen que duplicar su genoma y separarlo equitativamente entre las células nuevas que se forman.
En los últimos años, se ha analizado profundamente la base molecular de este proceso con la esperanza de encontrar nuevas dianas para frenar el crecimiento de las células tumorales.
Este estudio ha centrado su análisis, sobre todo en entender cómo las células tumorales «entran» en el ciclo celular; es decir, cómo empiezan a dividirse con la esperanza de poder frenar la división.
Madrid, diciembre 18/2010 (Europa Press)

En: Noticias #