genes

For the first time, researchers have laid bare the full genetic blueprint of multiple prostate tumors, uncovering alterations that have never before been detected and offering a deep view of the genetic missteps that underlie the disease. The study, made possible by key advances in whole genome sequencing and analysis, points to several new prostate cancer genes and a critical category of genomic changes as important drivers of prostate cancer growth. The work was led by researchers from the Broad Institute, Dana-Farber Cancer Institute and Weill Cornell Medical College and appears in the February 10th issue of the journal Nature. Unlike other sequencing methods that target specific sections of the genome, whole genome sequencing enables researchers to look across the entire DNA landscape of a tumor, making it possible to discern global changes and patterns. Senior authors Levi Garraway and Mark Rubin and their colleagues used this strategy to view the complete genomes of seven prostate tumors and compare them to normal tissue samples to find regions of abnormality.  «Whole genome sequencing gives us fascinating new insights into a category of alterations that may be especially important in prostate cancer,» said Garraway, a senior associate member of the Broad Institute and a medical oncologist and assistant professor at the Dana–Farber and Harvard Medical School.  Prostate cancer is the second most lethal cancer in American men, responsible for more than 30,000 deaths and more than 200,000 new cases each year. A major goal of prostate cancer research is to identify potential drug targets as well as genetic characteristics within tumors that could distinguish indolent and aggressive forms of the disease, and ultimately improve diagnostics and treatment. Rubin, the Homer T. Hirst Professor of Oncology in Pathology and vice chair for experimental pathology at Weill Cornell Medical College, compares the Nature study to looking not just for spelling errors in the genome, but also for whole paragraphs or sections of genomic text that have been rearranged. «One of the big surprises is the fact that prostate cancer doesn’t have a large number of misspellings, but instead has a large, significant number of rearrangements,» said Rubin. «We would never have guessed that there were so many genomic alterations of this type before now because we didn’t have the right tools to look for them.» These alterations are known as genomic rearrangements — a kind of shuffling that occurs when a piece of DNA from one part of the genome breaks off and reattaches itself in another location. These rearrangements can create new genes (called «fusion genes»), allow a gene to operate unchecked, or prevent a gene from even working at all. Such changes can set a cell on a path toward cancer. By looking for genes affected by these rearrangements in multiple prostate cancer samples, the researchers unearthed new genes tied to the disease and found new mechanisms that may be driving cancer as a whole.  «This first whole genome view shows us tantalizing evidence for several new prostate cancer genes that likely would have remained undiscovered had we not been taking a genome-wide approach,» said Garraway.  Several tumors contained rearrangements disrupting the gene that codes for the protein CADM2, part of a family of proteins that prevent tumors from forming (known as «tumor suppressors»). Three samples also contained mutations involving members of the heat shock protein family, molecules that play an important, protective role and keep proteins from losing their proper shape. Anti-cancer drugs that inhibit these proteins are currently in clinical trials, but it is not yet clear whether prostate cancers will be vulnerable to such drugs. Other recurring genomic rearrangements involve the genes PTEN and MAGI2. PTEN is a well-known tumor suppressor gene and MAGI2 appears to be its helpmate; mutations to one or both genes may set cells on the path toward becoming cancerous. Drugs that inhibit the pathway these genes influence are also being developed, raising the possibility that the drugs could be applied to prostate cancer.  In addition to uncovering new and suspected genes, whole genome sequencing has also given Garraway, Rubin and their colleagues insights into how genomic rearrangements arise in the first place. With a catalog of rearrangements in hand, the researchers looked for where breaks and reattachments tended to occur, and found that these events are not distributed randomly across the genome. Rather, in some tumors these events tend to take place in areas of the genome that are inactive or silent, while in other tumors they occur in regions that are highly active. This pattern suggests that mistakes made by cells while turning genes on and off might give rise to DNA rearrangements and therefore play a formative role in cancer’s development. The researchers’ findings may also provide a key starting point for the development of new diagnostic tools for prostate cancer. Currently, when patients are diagnosed with prostate cancer, it is almost impossible for doctors to determine if the disease will advance quickly and therefore require aggressive treatment, or whether the tumors will remain slow-growing, necessitating a wait-and-see approach. «This study could enhance our ability to develop new, diagnostic markers for prostate cancer,» said Rubin. «We can also imagine eventually developing more personalized diagnostic tools for patients with recurrent tumors, to essentially follow the tumors’ progression by testing for new genomic alterations.»  Although the researchers’ findings need to be studied further and extended to larger numbers of tumor samples, this initial analysis has opened up many new avenues of investigation, underscoring the power of applying whole genome sequencing to cancer.  «Many of these features were invisible before,» said Garraway. «Now, we’re realizing that by sequencing whole genomes in prostate cancer, there’s a lot more to see. These discoveries are teaching us a great deal about prostate cancer biology that we simply hadn’t appreciated previously.»
http://www.eurekalert.org/pub_releases/2011-02/biom-svo020711.php

En: Noticias #

Un equipo internacional que trabaja en el mayor estudio realizado hasta la fecha para detectar relaciones entre el ADN y la diabetes mellitus tipo 2, halló 12 nuevas asociaciones genéticas que ofrecen claves importantes acerca del funcionamiento de la enfermedad crónica.
Los investigadores de Europa, Estados Unidos y Canadá informaron que sus resultados no sólo mejorarán el conocimiento sobre las causas de la diabetes mellitus tipo 2, sino que sugieren procesos biológicos que pueden ser explorados como posibles vías para desarrollar nuevos medicamentos.
«Las señales que identificamos nos ofrecen claves importantes acerca de la base biológica de la diabetes mellitus tipo 2. El desafío será convertir estos resultados genéticos en mejores alternativas para tratar y prevenir la condición», dijo Mark McCarthy, del Centro de Genética Humana de la Universidad de Oxford en Reino Unido, quien dirigió el estudio.
La enfermedad es causada por la incapacidad del cuerpo de usar adecuadamente la insulina, hormona producida por el páncreas que controla la glucosa proveniente de las comidas. Los niveles de azúcar pueden aumentar y dañar los ojos, los riñones, los nervios, el corazón y las principales arterias.
En la actualidad, la afección que a menudo es relacionada con los malos hábitos alimentarios y el sedentarismo, alcanza niveles epidémicos a medida que las tasas de obesidad aumentan. Alrededor de 180 millones de personas en el mundo sufren diabetes mellitus.
La identificación de 12 nuevos genes lleva el número total de regiones genéticas ligadas a esta enfermedad a 38. El equipo, destacó que los genes detectados tienden a estar involucrados en el funcionamiento de las células pancreáticas que producen insulina y controlan la acción de la hormona en el cuerpo.
Cada variante genética aportaba un efecto muy pequeño en el riesgo de la enfermedad. Incluso combinadas, su capacidad de predecir la posible aparición de la condición era modesta. Un tema particularmente importante de los resultados fue que varios de los genes parecían ser relevantes en el control del número de células beta del páncreas que producen insulina. Este hallazgo podría ayudar a resolver las dudas acerca de cómo impacta la cantidad de células beta en el desarrollo de la enfermedad, expresó McCarthy.
El equipo usó tecnología de secuenciación de genes para comparar el ADN de más de 8000 pacientes con la afección y casi 40 000 personas sin la condición, en alrededor de 2,5 millones de lugares del genoma. Luego analizaron las variaciones genéticas que encontraron en otro grupo de más de 34 000 pacientes con diabetes mellitus y alrededor de 60 000 personas sin la afección.
Jim Wilson, de la Universidad de Edimburgo, Reino Unido, quien trabajó en el estudio, destacó que otro resultado interesante fue que los genes de susceptibilidad a la diabetes mellitus contienen variantes que aumentan el riesgo de sufrir otras enfermedades, como cáncer de piel, cáncer de próstata, enfermedad cardíaca e hipercolesterolemia. «Esto implica que la diferente regulación de estos genes puede provocar varias enfermedades», afirmó.
Londres, junio 28/2010 (Reuters)

En: Noticias #